TranSpec3D: A Novel Measurement Principle to Generate A Non-Synthetic Data Set of Transparent and Specular Surfaces without Object Preparation

Author:

Junger Christina1ORCID,Speck Henri2,Landmann Martin2ORCID,Srokos Kevin2,Notni Gunther12ORCID

Affiliation:

1. Group for Quality Assurance and Industrial Image Processing, Technische Universität Ilmenau, 98693 Ilmenau, Germany

2. Fraunhofer Institute for Applied Optics and Precision Engineering IOF Jena, 07745 Jena, Germany

Abstract

Estimating depth from images is a common technique in 3D perception. However, dealing with non-Lambertian materials, e.g., transparent or specular, is still nowadays an open challenge. However, to overcome this challenge with deep stereo matching networks or monocular depth estimation, data sets with non-Lambertian objects are mandatory. Currently, only few real-world data sets are available. This is due to the high effort and time-consuming process of generating these data sets with ground truth. Currently, transparent objects must be prepared, e.g., painted or powdered, or an opaque twin of the non-Lambertian object is needed. This makes data acquisition very time consuming and elaborate. We present a new measurement principle for how to generate a real data set of transparent and specular surfaces without object preparation techniques, which greatly reduces the effort and time required for data collection. For this purpose, we use a thermal 3D sensor as a reference system, which allows the 3D detection of transparent and reflective surfaces without object preparation. In addition, we publish the first-ever real stereo data set, called TranSpec3D, where ground truth disparities without object preparation were generated using this measurement principle. The data set contains 110 objects and consists of 148 scenes, each taken in different lighting environments, which increases the size of the data set and creates different reflections on the surface. We also show the advantages and disadvantages of our measurement principle and data set compared to the Booster data set (generated with object preparation), as well as the current limitations of our novel method.

Funder

Carl-Zeiss-Stiftung as part of the project Engineering for Smart Manufacturing

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multimodal 3D measurement setup for generating multimodal real-world data sets for AI-based transparent object recognition;Dimensional Optical Metrology and Inspection for Practical Applications XIII;2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3