Abstract
In recent years, significant work has been done in technological enhancements for mobility aids (smart walkers). However, most of this work does not cover the millions of people who have both mobility and visual impairments. In this paper, we design and study four different configurations of smart walkers that are specifically targeted to the needs of this population. We investigated different sensing technologies (ultrasound-based, infrared depth cameras and RGB cameras with advanced computer vision processing), software configurations, and user interface modalities (haptic and audio signal based). Our experiments show that there are several engineering choices that can be used in the design of such assistive devices. Furthermore, we found that a holistic evaluation of the end-to-end performance of the systems is necessary, as the quality of the user interface often has a larger impact on the overall performance than increases in the sensing accuracy beyond a certain point.
Funder
National Science Foundation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献