HADF-Crowd: A Hierarchical Attention-Based Dense Feature Extraction Network for Single-Image Crowd Counting

Author:

Ilyas NaveedORCID,Lee BoreomORCID,Kim Kiseon

Abstract

Crowd counting is a challenging task due to large perspective, density, and scale variations. CNN-based crowd counting techniques have achieved significant performance in sparse to dense environments. However, crowd counting in high perspective-varying scenes (images) is getting harder due to different density levels occupied by the same number of pixels. In this way large variations for objects in the same spatial area make it difficult to count accurately. Further, existing CNN-based crowd counting methods are used to extract rich deep features; however, these features are used locally and disseminated while propagating through intermediate layers. This results in high counting errors, especially in dense and high perspective-variation scenes. Further, class-specific responses along channel dimensions are underestimated. To address these above mentioned issues, we therefore propose a CNN-based dense feature extraction network for accurate crowd counting. Our proposed model comprises three main modules: (1) backbone network, (2) dense feature extraction modules (DFEMs), and (3) channel attention module (CAM). The backbone network is used to obtain general features with strong transfer learning ability. The DFEM is composed of multiple sub-modules called dense stacked convolution modules (DSCMs), densely connected with each other. In this way features extracted from lower and middle-lower layers are propagated to higher layers through dense connections. In addition, combinations of task independent general features obtained by the former modules and task-specific features obtained by later ones are incorporated to obtain high counting accuracy in large perspective-varying scenes. Further, to exploit the class-specific response between background and foreground, CAM is incorporated at the end to obtain high-level features along channel dimensions for better counting accuracy. Moreover, we have evaluated the proposed method on three well known datasets: Shanghaitech (Part-A), Shanghaitech (Part-B), and Venice. The performance of the proposed technique justifies its relative effectiveness in terms of selected performance compared to state-of-the-art techniques.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Video surveillance using deep transfer learning and deep domain adaptation: Towards better generalization;Engineering Applications of Artificial Intelligence;2023-03

2. Research on steel rail surface defects detection based on improved YOLOv4 network;Frontiers in Neurorobotics;2023-02-09

3. A Deep Learning-Based Crowd Counting Method and System Implementation on Neural Processing Unit Platform;Computers, Materials & Continua;2023

4. Double Encryption Algorithm for Massive Personal Biometric Authentication Images Based on Chaotic Mapping for Future Smart Cities;Journal of Testing and Evaluation;2022-09-23

5. Transfer Learning For Crowed Counting;2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA);2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3