Abstract
The peptidyl transferase center (PTC) is the catalytic center of the ribosome and forms part of the 23S ribosomal RNA. The PTC has been recognized as the earliest ribosomal part and its origins embodied the First Universal Common Ancestor (FUCA). The PTC is frequently assumed to be highly conserved along all living beings. In this work, we posed the following questions: (i) How many 100% conserved bases can be found in the PTC? (ii) Is it possible to identify clusters of informationally linked nucleotides along its sequence? (iii) Can we propose how the PTC was formed? (iv) How does sequence conservation reflect on the secondary and tertiary structures of the PTC? Aiming to answer these questions, all available complete sequences of 23S ribosomal RNA from Bacteria and Archaea deposited on GenBank database were downloaded. Using a sequence bait of 179 bp from the PTC of Thermus termophilus, we performed an optimum pairwise alignment to retrieve the PTC region from 1424 filtered 23S rRNA sequences. These PTC sequences were multiply aligned, and the conserved regions were assigned and observed along the primary, secondary, and tertiary structures. The PTC structure was observed to be more highly conserved close to the adenine located at the catalytical site. Clusters of interrelated, co-evolving nucleotides reinforce previous assumptions that the PTC was formed by the concatenation of proto-tRNAs and important residues responsible for its assembly were identified. The observed sequence variation does not seem to significantly affect the 3D structure of the PTC ribozyme.
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献