Transient Stability Analysis for Grid-Forming VSCs Based on Nonlinear Decoupling Method

Author:

Li Yue1,Xia Yanghong1ORCID,Ni Yini1,Peng Yonggang1ORCID,Feng Qifan1

Affiliation:

1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

With the increasing integration of renewable energy into the power grid, there is a growing demand for converters that not only provide stable power, but also support auxiliary functions such as grid-voltage regulation. Consequently, grid-forming strategies have attracted significant attention. However, due to the complexities of analyzing nonlinear coupling systems, a comprehensive transient stability analysis of grid-forming converters is still being explored. Conventional analysis methods rely on a simplified quasi-steady-state model for grid-forming voltage source converters (VSCs) and focus on analyzing the transient instability phenomenon caused by the outer power loop. However, this oversimplified model may yield incorrect conclusions. To address this limitation, this paper develops a full-order model that includes quadratic nonlinear terms to accurately represent the system’s nonlinear characteristics. The developed model is then decoupled into multiple low-order modes using a nonlinear decoupling method. These low-order modes can be analyzed using the mature inversing trajectory method, indirectly reflecting the transient stability of grid-forming VSCs under large disturbances. Through varying the inner and outer parameters, the transient stability of grid-forming VSCs is analyzed in detail. Furthermore, the analysis results are verified through hardware-in-loop (HIL) experiments.

Funder

National Key R&D Program of China

Science and Technology Project of the State Grid Corporation of Zhejiang Province

“Pioneer” and “Lead Goose” R&D Program of Zhejiang Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3