Computational Fluid Dynamics Simulation to Investigate Diffuser Outlet Factors in Anaerobic Membrane Bioreactors Treating Wastewater

Author:

Wang Haoran1,Ohta Makoto1ORCID,Anzai Hitomi1,Ji Jiayuan12ORCID

Affiliation:

1. Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

2. Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan

Abstract

Anaerobic membrane bioreactors (AnMBRs) require biogas recycling to stir the mixed liquid and flush particles away from the membrane surfaces for stable operation. With the fixed gas cycling rate, gas diffuser configuration is an important factor that affects stirring and flushing performance. This study investigated the effect of different outlet diameters on biogas diffusers in AnMBR by using computational fluid dynamics (CFD) to analyze gas–liquid flow in a numerical model constructed based on an experimental AnMBR. According to the CFD results, as the outlet diameter increased from 2.5 to 5.0 mm, the average velocity increased from 0.15 to 0.31 m/s and the average wall shear stress (WSS) increased from 0.21 to 1.10 Pa on the membrane surface. The increase in gas velocity enhances the stirring effect, and the increase in WSS improves the flushing performance. However, when it was further increased to 10.0 mm, the average velocity and average WSS was 0.27 m/s and 0.22 Pa, respectively, indicating that too large an outlet diameter leads to a concentrated gas distribution, which reduces the performance of stirring and flushing. Furthermore, these results provide a basis for optimizing diffuser configuration, which is significant for promoting the practical application of AnMBR in wastewater treatment.

Funder

Society for the Promotion of Construction Engineering

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3