Analysis of Asymmetric Fault Commutation Failure in HVDC System Considering Instantaneous Variation of DC Current

Author:

Wang Yufei1,Wang Haiyun1,Wu Jiahui1

Affiliation:

1. Engineering Research Center of Education Ministry for Renewable Energy Power Generation and Grid Connection, College of Electrical Engineering, Xinjiang University, Urumqi 830017, China

Abstract

HVDC is an important part of reducing energy transmission losses and maintaining energy sustainability. Commutation failure is the most common fault in HVDC systems, but existing commutation failure analysis approaches for HVDC systems do not consider the effects of instantly increasing direct current on the turn-off angle after an asymmetric fault in the AC system. To address this problem, we developed a commutation failure analysis approach that considers instantaneous variation of the DC current and AC voltage after asymmetrical faults. Firstly, the effects of the AC voltage and the DC current on the turn-off angle and the coupling relationship between the two are analyzed. Secondly, an equivalent mathematical model of the DC line, which covers the reactance, is built in Laplace space. Combined with the phase angle offset generated by the voltage after an asymmetric fault, a single relation expression containing only the AC voltage and turn-off angle is obtained by decoupling the DC current and AC voltage. The critical instantaneous AC voltage leading to system commutation failure is then derived based on the critical turn-off angle. Lastly, based on the CIGRE HVDC model built in the PSCAD electromagnetic transient simulation software (PSCAD v46), the accuracy of the proposed commutation failure analysis method compared with the other two methods is verified via simulation experiments under different grounding impedance values, and the applicability of the proposed method is further verified using simulation experiments with different smoothing reactor parameters.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3