Green Distribution Route Optimization of Medical Relief Supplies Based on Improved NSGA-II Algorithm under Dual-Uncertainty

Author:

Peng Shuyue1,Liu Qinming1,Hu Jiarui1

Affiliation:

1. Department of Industrial Engineering, Business School, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China

Abstract

With growing concerns about environmental issues, sustainable transport schemes are receiving more attention than ever before. Reducing pollutant emissions during vehicle driving is an essential way of achieving sustainable transport plans. To achieve sustainable transport and reduce carbon emissions, on the premise of ensuring rescue timeliness, this research proposes a multi-objective distribution route optimization model considering the minimization of transportation cost and transportation risk under dual-uncertainty constraints, providing a practical framework for determining the optimal location of rescue centers and distribution routes in emergencies using fuzzy theory. First, this paper proposes objective functions that innovatively take into account the congestion risk and accident risk during the distribution of medical supplies while introducing the carbon emission cost into the transportation cost and using the fuzzy demand for supplies and the fuzzy traffic flow on the roads as uncertainty constraints. Then, this paper designs a multi-strategy hybrid nondominated sorting genetic algorithm (MHNSGA-II) based on the original form to solve the model. MHNSGA-II adapts a two-stage real number coding method for chromosomes and optimizes the population initialization, crowding distances selection, and crossover and mutation probability calculation methods. The relevant case analysis demonstrates that, compared with the original NSGA-II, MHNSGA-II can decrease the transportation cost and transportation risk by 42.55% and 5.73%, respectively. The sensitivity analysis verifies the validity and rationality of the proposed model. The proposed framework can assist decision makers in emergency logistics rescue.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Humanity and Social Science Planning Foundation of the Ministry of Education of China

the University of Shanghai for Technology and Science

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3