Exploring Interacting Effects of Forest Restoration on Wildfire Risk, Hydropower, and Environmental Flows

Author:

Bryant Benjamin P.1,Maurer Tessa2ORCID,Saksa Philip C.2ORCID,Herman Jonathan D.3,Wilson Kristen N.4ORCID,Smith Edward4

Affiliation:

1. Independent Consultant, Mount Vernon, WA 98274, USA

2. Blue Forest Conservation, Sacramento, CA 95822, USA

3. Department of Civil & Environmental Engineering, University of California, Davis, CA 95616, USA

4. The Nature Conservancy, Sacramento, CA 95811, USA

Abstract

Forest fires in the western U.S. are increasing in size and intensity, partly due to overstocked forests, a legacy of fire exclusion. Forest restoration can mitigate fire severity and improve ecological health, but funding poses challenges to meaningfully scaling restoration efforts. Co-benefits of restoration can expand the funding options for forest management. In particular, streamflow enhancement may justify financial participation from water and hydroelectric utilities and environmental organizations. However, most efforts to estimate the value of this benefit do not account for interacting effects of restoration, fire, and operational constraints, including environmental flows. To address this, we coupled multiple models using generalizable techniques in order to quantify the impact of restoration on fire behavior, water yield, and hydropower generation in a California reservoir system subject to real-world constraints. The modeled results show water yield benefits from treatment alone, with greater benefits accruing with a return of low-intensity fire. Average annual runoff with treatment increases by 1.67 to 1.95 thousand acre-feet (1.5 to 1.8%) depending on the fire scenario, creating up to 2880 MWh and USD 115,000 of annual generation and revenue. These modest but non-negligible impacts could account for 8.2–15.8% of restoration costs, supporting the co-benefits model to drive investment in forest management.

Funder

Ishiyama Foundation

Blue Forest Conservation

The Nature Conservancy

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3