Decentralized Power Flow Control Strategy Using Transition Operations of DC-Bus Voltage for Detection of Uncertain DC Microgrid Operations

Author:

Jabbar Muhammad Alif Miraj1ORCID,Tran Dat Thanh1ORCID,Kim Kyeong-Hwa1ORCID

Affiliation:

1. Department of Electrical and Information Engineering, Research Center for Electrical and Information Technology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea

Abstract

To enhance the reliability and flexibility of DC microgrids (DCMGs), this paper presents a decentralized power flow control strategy (PFCS) by using the transition operation modes. The transition operation modes are introduced as an effective communication method among power units, eliminating the use of additional digital communication links (DCLs) for the purpose of ensuring the power balance as well as the voltage regulation even under uncertain conditions. During the transition operation modes, the power unit which transmits the information shifts the DC-link voltage level, and the power unit which receives the information continuously monitors the DC-link voltage with predetermined time. When uncertain conditions occur in a particular power unit, this power unit triggers the transition operation modes to send this information to all power units in the DCMG system. The proposed PFCS can maintain the DC-link voltage at the nominal value for steady-state conditions both in the grid-connected mode and islanded mode. Moreover, the proposed PFCS significantly enhances the overall reliability of the decentralized DCMG system by effectively addressing several uncertainties stemmed from electricity price fluctuations, grid availability, battery state-of-charge (SOC) levels, and wind power variations. The scalability of the DCMG system is also demonstrated by incorporating an electric vehicle (EV) unit as an additional energy storage system (ESS). The EV unit seamlessly cooperates with the existing battery unit, functioning as additional ESS to regulate the DC-link voltage when the battery SOC level is low. Simulation and experimentation results under various conditions demonstrate the effectiveness of the proposed PFCS.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3