Effect of Solvent Pretreatment on the Flash Pyrolysis Performance of Yinggema Lignite

Author:

Mo Wen-Long12ORCID,Kan Hui2,Wu Ting2,Hu Xiao-Bo2,Ma Ya-Ya23,Guo Jia1,Guo Wen-Cang1,Wei Xian-Yong24,Akram Naeem5ORCID

Affiliation:

1. Xinjiang Energy Co., Ltd., Urumqi 830018, China

2. State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, Key Laboratory of Coal Clean Conversion & Chemical Engineering Process, College of Chemical Engineering, Xinjiang University, Urumqi 830046, China

3. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

4. Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou 221116, China

5. School of Chemical Engineering, Minhaj University Lahore, Lahore 54000, Punjab, Pakistan

Abstract

Yinggema lignite (YL) was pretreated with isometric acetone/carbon disulfide mixed solvent to obtain the residue (RYL) and, then, RYL was separated by density difference with carbon tetrachloride to obtain the light residue (LRYL). The flash pyrolysis performances of YL and LRYL were analyzed by thermogravimetry–Fourier transform infrared spectrometer–Gas chromatography/mass spectrometer (TG-FTIR-GC/MS). The results showed that solvent pretreatment could remove some small molecules in the coal and swell the used coal, leading to the increase in pyrolysis reactivity. The intensity and absorption peak area of C=O from LRYL were significantly reduced compared to YL, resulting from the high hydrogen-donating ability of acetone. The main gaseous products of both samples are H2O, CH4, CO2, and CO; the hydrocarbons detected by GC/MS in the pyrolysis products of YL and LRYL at 450 °C were mainly alkanes, alkenes, and arenes, with the higher relative contents of alkanes of 31.1% and 36.2%, followed by arenes of 27.1% and 22.6%, respectively. The oxygen-containing compounds were mainly alcohols and phenols. It is speculated that the pretreated coal could expose more oxygen-containing functional groups, facilitating their conversion to phenolic hydroxyl groups during the pyrolysis process, resulting in more phenolic compounds.

Funder

the special project for regional collaborative innovation from the Xinjiang Uyghur Autonomous Region

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3