Structure and Assembly Mechanism of Archaeal Communities in Deep Soil Contaminated by Chlorinated Hydrocarbons

Author:

Fan Yanling12,Liu Zengjun2,Xu Hefeng3,Wang Hongqi1

Affiliation:

1. College of Water Sciences, Beijing Normal University, Beijing 100875, China

2. Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China

3. Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China

Abstract

Chlorinated hydrocarbons are typical organic pollutants in contaminated sites, and microbial remediation technology has attracted more and more attention. To study the structural characteristics and assembly mechanism of the archaeal community in chlorinated hydrocarbon-contaminated soil, unsaturated-zone soil within 2~10 m was collected. Based on high-throughput sequencing technology, the archaeal community was analyzed, and the main drivers, environmental influencing factors, and assembly mechanisms were revealed. The results showed that chlorinated hydrocarbon pollution altered archaeal community structure. The archaeal community composition was significantly correlated with trichloroethylene (r = 0.49, p = 0.001), chloroform (r = 0.60, p = 0.001), pH (r = 0.27, p = 0.036), sulfate (r = 0.21, p = 0.032), and total carbon (r = 0.23, p = 0.041). Under pollution stress, the relative abundance of Thermoplasmatota increased to 25.61%. Deterministic processes increased in the heavily polluted soil, resulting in reduced species richness, while positive collaboration among surviving species increased to 100%. These results provide new insights into the organization of archaeal communities in chlorinated hydrocarbon-contaminated sites and provide a basis for remediation activities.

Funder

Foundation Project of the Beijing Municipal Research Institute of Eco-Environmental Protection

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3