Optimal Management of Seasonal Pumped Hydro Storage System for Peak Shaving

Author:

Abdelfattah Asmaa I.1,Shaaban Mostafa F.1ORCID,Osman Ahmed H.1,Ali Abdelfatah12ORCID

Affiliation:

1. Department of Electrical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates

2. Department of Electrical Engineering, South Valley University, Qena 83523, Egypt

Abstract

Power demand varies on a daily and seasonal basis. Responding to changing demands over time is challenging for energy suppliers as it causes expensive power plants to operate in high-demand seasons, usually summer, increasing the cost of electricity. Peak load shaving makes the load curve flatten by reducing the peak load and shifting it to times of lower demand, hence reducing the operation of expensive power plants. Hence, there is a need for large-scale and long-term ESS to store energy in the time of low-demand seasons for future utilization in the highest-demand ones. In this work, an energy management system (EMS) is developed to optimally manage a grid-connected pumped hydro storage (PHS) for peak shaving. The proposed model incorporates a dynamic economic dispatch (DED) over a study period of one year; hence, a DC power flow analysis considering transmission constraints is utilized to ensure a fast load flow estimation and a manageable simulation time. The framework can be adopted to assess the long-term profitability of PHS-utilizing GAMS as an optimization tool. Further, to draw conclusions that would suit the characteristics of the demand pattern. This analysis is essential to motivate the construction of new seasonal PHS plants due to the high construction costs they are identified with, especially in geographical areas where this technology is not yet considered or is hard to construct. The simulation results demonstrate that integrating 1500 MWh PHS reduced the operation of expensive thermal units by 1224 MWh annually. Further, a reduction in operation costs was recorded after integrating a PHS unit that ranged from 2.6 M to 22 M USD/year, depending on the storage capacity.

Funder

American University of Sharjah

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3