Probing Fault Features of Lithium-Ion Battery Modules under Mechanical Deformation Loading

Author:

Zhang Anwei1,Zhou You1,Wang Chengyun1,Liu Shoutong2,Huang Peifeng2,Yan Hao1,Bai Zhonghao2

Affiliation:

1. GAC Automotive Research & Development Center, Guangzhou 511434, China

2. State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410012, China

Abstract

Electric vehicle battery systems are easily deformed following bottom or side pillar collisions. There is a knowledge gap regarding the fault features of minor mechanical deformation without ISC, which can be used for early warning of mechanical deformation. In this study, the fault features of a lithium-ion battery module under different degrees of mechanical deformation were studied from the perspective of voltage consistency. The results show that the capacity of the battery module declines with an increase in indentation depth, consistent with the capacity degradation of the indented cell. During the charging and discharging processes, the voltage of the indented cell deviates to a lower value compared to the other normal cells. At the end of the discharging process, the voltage sharply declines and exhibits a significant deviation from the other normal cells. The Mean Normalization (MN) method is employed to quantitatively describe the voltage consistency. The results indicate that the MN value of the indented cell’s voltage is distributed at the lowest during the charging period and sharply declines below −0.06 at the end of discharging. In the future, a fault detection method for mechanical abuse will be established based on these features.

Funder

Natural Science Foundation of Hunan province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3