Microbial–Plant Collaborative Remediation of Cd-Contaminated Wastewater and Soil in the Surrounding Area of Nuclear Power Plants and Risk Assessment

Author:

Wei Wei1,Song Yan2

Affiliation:

1. School of Economics and Management, Harbin Engineering University, Harbin 150001, China

2. School of Business and Management, Shanghai International Studies University, Shanghai 201620, China

Abstract

The continuous development of China’s nuclear industry has caused an increasingly serious problem of heavy metal pollution in the ecological environment. A survey of the current situation shows that the quality of China’s groundwater bodies and their surrounding ecological environment has been severely affected. China has started to devote more attention to the issue of nuclear emissions and pollution. In view of this, this study takes an area contaminated by nuclear power plant emissions as the object of research and uses plant–microbe synergy to remediate the cadmium-contaminated environment. Cadmium-tolerant strains were isolated from the soil and identified as Serratia marcescens. The morphological characteristics of the cadmium-tolerant strains were observed with electron microscopy in the presence or absence of cadmium ions. The removal of Cd2+ from wastewater was analyzed in four experimental groups: Cd2+ removal from Cd2+-contaminated wastewater by combining a Cd-tolerant strain with Cd-flower, Cd-tolerant strain with Cd-flower, Cd-flower with alkali treatment, and Cd-tolerant strain with alkali treatment. This study innovatively treated Cd ion concentrations of 50 mg/L, 100 mg/L, 200 mg/L, and 300 mg/L. The results showed that the cadmium-tolerant strains were more densely concentrated in the treated Phyllostachys than in the untreated condition. This indicates that the Cd-tolerant strains were effectively enhanced by the alkali treatment of Phyllostachys spp. and that the adsorption of Cd ions to the Cd-tolerant strains was improved. In the presence of Cd2+ flowers only, the best removal of Cd2+ was achieved at a concentration of 50 mg/L, with a removal rate of 74.10%; the addition of Cd-tolerant strains resulted in a removal rate of 91.21%. When the alkali treatment was applied to the flat bamboo flowers, the removal rate was 84.36% when the concentration of Cd2+ was 100 mg/L. Then, when the cadmium-tolerant strain was added to the treated flat bamboo flower group, the maximum removal rate was 89.74% when the concentration of Cd2+ was 100 mg/L. The cadmium ion content of Cd2+ increased positively with increasing experimental time. In addition, the quasi-secondary correlation coefficients for cadmium ions in Lobelia were all greater than 0.9905, indicating that the adsorption kinetics were significantly correlated with the quasi-secondary kinetics. The analysis of heavy metal enrichment in Lobelia was divided into four groups, with Lobelia showing the best tolerance and cadmium adsorption capacity at a cadmium concentration of 20 mg/L. The results of super-enrichment coefficients showed that the enrichment coefficients of Lobelia ranged from 1.03 to 1.97, with values greater than 1. All these results indicate that the combination of cadmium-tolerant strains and plants can effectively remediate nuclear-contaminated soil and wastewater, thus improving soil availability and water regeneration, and improving the human living environment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3