Investigating the Role of Artificial Intelligence Technologies in the Construction Industry Using a Delphi-ANP-TOPSIS Hybrid MCDM Concept under a Fuzzy Environment

Author:

Wang Ke1,Ying Ziyi23,Goswami Shankha Shubhra4ORCID,Yin Yongsheng5,Zhao Yafei6

Affiliation:

1. Department of Civil and Architectural Engineering, Qingdao University of Technology, Linyi 273400, China

2. College of Architecture and Energy Engineering, Wenzhou University of Technology, Wenzhou 325055, China

3. Taishun Research Institute, Wenzhou University of Technology, Wenzhou 325599, China

4. Department of Mechanical Engineering, Indira Gandhi Institute of Technology, Sarang 759146, India

5. School of Architecture, Tianjin University, Tianjin 300072, China

6. Solearth Architecture Research Center, Building Information Technology Innovation Laboratory (BITI Lab.), Hong Kong 999077, China

Abstract

The construction business is always changing, and with the introduction of artificial intelligence (AI) technology it is undergoing substantial modifications in a variety of areas. The purpose of this research paper is to investigate the function of AI tools in the construction industry using a hybrid multi-criteria decision-making (MCDM) framework based on the Delphi method, analytic network process (ANP), and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) under a fuzzy scenario. The ANP framework offers a systematic approach to quantifying the relative importance of AI technologies based on expert opinions gathered during the Delphi process, whereas the fuzzy TOPSIS methodology is used to rank and select the most appropriate AI technologies for the construction industry. The final results from the ANP revealed that the technological factors are the most crucial, followed by the environmental factors, which highly influence the AI environment. In addition, TOPSIS identified robotics and automation as the best AI alternative among the three options, followed by building information modeling (BIM), whereas computer vision was the least preferred among the list. The proposed hybrid MCDM framework enables a comprehensive evaluation and selection process that takes into account the interdependencies between AI technologies and uncertainties in decision-making.

Funder

Wenzhou Basic Scientific Research Program

University-Enterprise-Partnership Program of Solearth Architecture

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3