Autoencoder and Partially Impossible Reconstruction Losses

Author:

Dias Da Cruz SteveORCID,Taetz BertramORCID,Stifter ThomasORCID,Stricker DidierORCID

Abstract

The generally unsupervised nature of autoencoder models implies that the main training metric is formulated as the error between input images and their corresponding reconstructions. Different reconstruction loss variations and latent space regularizations have been shown to improve model performances depending on the tasks to solve and to induce new desirable properties such as disentanglement. Nevertheless, measuring the success in, or enforcing properties by, the input pixel space is a challenging endeavour. In this work, we want to make use of the available data more efficiently and provide design choices to be considered in the recording or generation of future datasets to implicitly induce desirable properties during training. To this end, we propose a new sampling technique which matches semantically important parts of the image while randomizing the other parts, leading to salient feature extraction and a neglection of unimportant details. The proposed method can be combined with any existing reconstruction loss and the performance gain is superior to the triplet loss. We analyse the resulting properties on various datasets and show improvements on several computer vision tasks: illumination and unwanted features can be normalized or smoothed out and shadows are removed such that classification or other tasks work more reliably; a better invariances with respect to unwanted features is induced; the generalization capacities from synthetic to real images is improved, such that more of the semantics are preserved; uncertainty estimation is superior to Monte Carlo Dropout and an ensemble of models, particularly for datasets of higher visual complexity. Finally, classification accuracy by means of simple linear classifiers in the latent space is improved compared to the triplet loss. For each task, the improvements are highlighted on several datasets commonly used by the research community, as well as in automotive applications.

Funder

Fonds National de la Recherche

Federal Ministry of Education and Research

Ministère de l'Économie

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference93 articles.

1. Isolating sources of disentanglement in VAEs;Chen;Proceedings of the 32nd International Conference on Neural Information Processing Systems (NeurIPS),2018

2. Auto-Encoding Variational Bayes;Kingma;Proceedings of the International Conference on Learning Representations (ICLR),2014

3. Triplet Enhanced AutoEncoder: Model-free Discriminative Network Embedding;Yang;Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI),2019

4. Neural discrete representation learning;van den Oord;Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS),2017

5. Image denoising and inpainting with deep neural networks;Xie;Proceedings of the Advances in Neural Information Processing Systems (NeurIPS),2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3