Abstract
Ischemic stroke is a debilitating neurological disease most commonly resulting from an occlusion within the cerebral vasculature. Ischemia/reperfusion injury is oftentimes a consequence of stroke, characterized by oxidative stress, neuroinflammation, and the activation of surrounding glial cells following restoration of blood supply. Astrocytes are regarded as the most prominent glial cell in the brain and, under pathologic conditions, display, among other pathologies, activated (GFAP) relatively proportional to the degree of reactivity. The primary objective of the study was to determine the temporal profile of astrocyte reactivity following ischemic stroke. Thirty-four Sprague-Dawley rats were assigned to surgery consisting of either 90-min middle cerebral artery occlusion (MCAo) or sham surgery. Animals were sub-grouped by postoperative euthanization day; 2 days (n = 10), 4 days (n = 11), and 7 days (n = 13). Fluorescence microscopy and densitometry were utilized to quantify GFAP immunoreactivity, which indicated a non-linear relationship following ischemia/reperfusion. Results demonstrated substantially higher GFAP levels in MCAo groups than in sham, with peak GFAP reactivity being shown in the brains of rats euthanized on day 4. These findings are applicable to future research, especially in the investigation of interventions that target reactive astrocytes following ischemic injury.
Funder
American Heart Association
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献