Modest Reduction in CAG Repeat Length Rescues Motor Deficits but Not Purkinje Cell Pathology and Gliosis in Spinocerebellar Ataxia Type 1 Mice

Author:

Gilliat Stephen1ORCID,Rosa Juao-Guilherme1ORCID,Benjamin Genevieve1,Sbrocco Kaelin1,Lin Wensheng1,Cvetanovic Marija1

Affiliation:

1. Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, USA

Abstract

Spinocerebellar ataxia type 1 (SCA1) is a fatal, dominantly inherited neurodegenerative disease caused by the expansion of CAG repeats in the Ataxin-1 (ATXN1) gene. SCA1 is characterized by the early and prominent pathology of the cerebellar Purkinje cells that results in balance and coordination deficits. We previously demonstrated that cerebellar astrocytes contribute to SCA1 pathogenesis in a biphasic, stage of disease-dependent manner. We found that pro-inflammatory transcriptional regulator nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling in astrocytes has a neuroprotective role during early-stage SCA1. Here, we sought to examine whether further inducing NF-κB activation in astrocytes of SCA1 model mice at an early stage of the disease has therapeutic benefits. To perform this task, we created a novel Slc1a3-CreERT/IKKβCA/ATXN1[82Q] triple transgenic mouse model in which TMX injection at 4 weeks of age results in the expression of constitutively active inhibitor of kB kinase beta (IKKβCA), the main activator of NF-κB signaling. As we evaluated SCA1-like phenotypes, we noticed that ATXN1[82Q] mice did not exhibit motor deficits anymore, even at very late stages of the disease. We sequenced the mutant ATXN1 gene and discovered that the CAG repeat number had decreased from 82 to 71. However, despite the loss of motor phenotype, other well-characterized SCA1-changes, including atrophy of Purkinje cell dendrites, hallmarks of cerebellar astrogliosis and microgliosis, and Purkinje cell disease-associated gene expression changes, were still detectable in ATXN1[71Q] mice. We found delayed PC atrophy and calbindin reduction in SCA1 mice expressing IKKβCA in astrocytes implicating beneficial effects of increased NF-κB signaling on Purkinje cell pathology. The change in the motor phenotype of SCA1 mice with CAG reduction prevented us from evaluating the neuroprotective potential of IKKβCA on motor deficits in these mice.

Funder

National Institute of Health NINDS

Publisher

MDPI AG

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3