V-RBNN Based Small Drone Detection in Augmented Datasets for 3D LADAR System

Author:

Kim Byeong,Khan Danish,Bohak CirilORCID,Choi Wonju,Lee Hyun,Kim Min

Abstract

A common countermeasure to detect threatening drones is the electro-optical infrared (EO/IR) system. However, its performance is drastically reduced in conditions of complex background, saturation and light reflection. 3D laser sensor LiDAR is used to overcome the problems of 2D sensors like EO/IR, but it is not enough to detect small drones at a very long distance because of low laser energy and resolution. To solve this problem, A 3D LADAR sensor is under development. In this work, we study the detection methodology adequate to the LADAR sensor which can detect small drones at up to 2 km. First, a data augmentation method is proposed to generate a virtual target considering the laser beam and scanning characteristics, and to augment it with the actual LADAR sensor data for various kinds of tests before full hardware system developed. Second, a detection algorithm is proposed to detect drones using voxel-based background subtraction and variable radially bounded nearest neighbor (V-RBNN) method. The results show that 0.2 m L2 distance and 60% expected average overlap (EAO) indexes are satisfied for the required specification to detect 0.3 m size of small drones.

Funder

National Research Foundation of Korea

Institute for Information and communications Technology Promotion

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RaDro: Indoor Drone Tracking Using Millimeter Wave Radar;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2024-08-22

2. Enhancing UAV Classification With Synthetic Data: GMM LiDAR Simulator for Aerial Surveillance Applications;IEEE Sensors Journal;2024-08-15

3. 2-D inverse synthetic aperture Ladar imaging and tracking of maneuvering extended Micro-Doppler UAVs in atmospheric turbulence with skewness;Mechanical Systems and Signal Processing;2024-05

4. ADS: Study on the Anti-Drone System: Today’s Capability and Limitation;2023 14th International Conference on Information and Communication Technology Convergence (ICTC);2023-10-11

5. Performance Analysis of YOLOv7 and YOLOv8 Models for Drone Detection;2023 International Conference on Network, Multimedia and Information Technology (NMITCON);2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3