Understanding the Effect of Stepwise Irrigation on Liquid Holdup and Hysteresis Behavior of Unsaturated Ore Heap

Author:

Wang LeimingORCID,Yin Shenghua,Deng Bona

Abstract

Liquid is a crucial medium to contain soluble oxygen, valuable metal ions, and bacteria in unsaturated heap leaching. Liquid retention behavior is the first critical issue to be considered to efficiently extract low-grade minerals or wastes. In this study, the residual liquid holdup of an unsaturated packed bed was quantitatively discussed by liquid holdup (θ), residual liquid holdup (θresidual), relative liquid holdup (θ′), and relative porosity (n*) using the designed measuring device. The detailed liquid holdup and the hysteresis behavior under stepwise irrigation are indicated and discussed herein. The results show that relative porosity of the packed bed was negatively related to particle size, and intra-particle porosity was more developed in the −4.0 + 2.0 mm packed bed. The higher liquid retention of the unsaturated packed bed could be obtained by using stepwise irrigation (incrementally improved from 0.001 to 0.1 mm/s) instead of uniform irrigation (0.1 mm/s). It could be explained in that some of the immobile liquid could not flow out of the unsaturated packed bed, and this historical irrigation could have accelerated formation of flow paths. The θ was sensitive to superficial flow rate (or irrigation rate) in that it obviously increased if a higher superficial flow rate (u) was introduced, however, the θresidual was commonly affected by n* and θ′. Moreover, the liquid hysteresis easily performed under stepwise irrigation condition, where θ and θresidual were larger at u of the decreasing flow rate stage (DFRS) instead of u of the increasing flow rate stage (IFRS). These findings effectively quantify the liquid retention and the hysteresis behavior of ore heap, and the stepwise irrigation provides potential possibility to adjust liquid retention conditions.

Funder

Key Program of National Natural Science Foundation of China

111 Project

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3