Abstract
This work concerns the content of selected heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn), and determines the effect of absolute altitude on the content of metals in the plants of the Tatra National Park (TNP). The metals were determined in two species of plants, i.e., in the moss (Pleurozium schreberi (Willd.) Mitten) and in the Norway spruce (Picea abies (L.) H. Karst). Plant samples were collected in two test areas every 100 m of the altitude of the area, starting from 1000 m above sea level in the Lake Morskie Oko test area and from 1100 m above sea level in the Kasprowy Wierch test area, and ending at 1400 m above sea level for Lake Morskie Oko, and 1750 m above sea level (the moss) and 1550 m above sea level (the spruce) for Kasprowy Wierch. The two test areas are different from each other in terms of natural and physico-geographical conditions (geological structure, landform, climatic conditions). The conducted research showed that both plant species accumulated greater amounts of heavy metals in the Lake Morskie Oko test area than in the Kasprowy Wierch test area. The moss accumulated higher values of metals compared to the spruce. In both the moss and the spruce, the highest values, exceeding the natural content, were found for Cr, Pb, Cd, and Ni. For these metals, natural values were significantly exceeded: 20 times for Cr; 10 times for Pb; 4 times for Cd; and 3 times for Ni. For both examined areas, an increase in the quantity of accumulated metals in plants was also observed with the increase in altitude. The work focuses on the spreading around of heavy metals and their deposition on plants in protected high mountain (alpine) areas, in connection with altitude. Based on the obtained research results, Spearman’s and Kendall’s rank correlations were performed, and showed statistically significant relationships between the values for the content of metals and altitude. There are no heavy metal emission sources in the study area, so it is assumed that the metal content in the plants of the TNP is affected by long-range emissions.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献