Identifying Appropriate Locations for the Accelerated Weathering of Limestone to Reduce CO2 Emissions

Author:

Kirchner Julia S.,Lettmann Karsten A.,Schnetger Bernhard,Wolff Jörg-OlafORCID,Brumsack Hans-JürgenORCID

Abstract

The reduction in CO2 emissions is a major task for the coming decades. Accelerated weathering of limestone (AWL) can be used to capture CO2 from effluent gas streams and store it as bicarbonate in marine environments. We give an overview of the fundamental aspects of AWL, including associated CO2 emissions during the operation of AWL, characteristics of the accumulating bicarbonate-rich product water, and factors influencing the outgassing of CO2 from the ocean back into the atmosphere. Based on these aspects, we identify locations where AWL could be carried out favorably. The energy demand for AWL reduces the theoretical CO2 sequestration potential, for example, by only 5% in the case of a 100 km transport of limestone on roads. AWL-derived product water is characterized by high alkalinity but low pH values and, once in contact with the atmosphere, passive outgassing of CO2 from AWL-derived water occurs. This process is mainly driven by the difference between the fCO2 in the atmosphere and the oceanic surface layer, as well as the sea surface temperature at the discharge site. Promising sites for AWL may be in Florida or around the Mediterranean Sea, where outgassing could be prevented by injections into deep water layers.

Funder

Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Gueri­­­cke“ e.V.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3