Abstract
Platinum nanoparticles (Pt(0)NPs) are expected to play a vital role in future technologies as high-performance catalysts. The microbiological route for Pt(0)NPs’ production is considered a greener and simpler alternative to conventional methods. In order to explore the potential utility of extreme acidophiles, Fe(III)-reducing acidophilic bacteria, Acidocella aromatica and Acidiphilium crytpum, were tested for the production of bio-Pt(0)NPs from an acidic solution. Bio-Pt(0)NPs were successfully formed via a simple one-step reaction with the difference in the size and location between the two strains. Intact enzymatic activity was essential to exhibit the site for Pt(0) crystal nucleation, which enables the formation of well-dispersed, fine bio-Pt(0)NPs. Active Ac. aromatica cells produced the finest bio-Pt(0)NPs of mean and median size of 16.1 and 8.5 nm, respectively. The catalytic activity of bio-Pt(0)NPs was assessed using the Cr(VI) reduction reaction, which was shown to be in a negative linear correlation with the mean particle size under the conditions tested. This is the first study reporting the recruitment of acidophilic extremophiles for the production of Pt(0)NPs. Acidophilic extremophiles often inhabit metal-rich acidic liquors in nature and are expected to become the promising tool for metal nanotechnology.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献