Abstract
This paper reports the calibration and validation of a cone crusher model using industrial data. Usually, there are three calibration parameters in the condensed breakage function; by contrast, in this work, every entry of the lower triangular breakage function matrix is considered a calibration parameter. The calibration problem is cast as an optimization problem based on the least squares method. The results show that the calibrated model is able to fit the validation datasets closely, as seen from the low values of the objective function. Another significant advantage of the proposed approach is that the model can be calibrated on data that are usually available from industrial operation; no additional laboratory tests are required. Calibration and validation tests on datasets collected from two different mines show that the calibrated model is a strong candidate for use in various dynamic simulation applications, such as control system design, equipment sizing, operator training, and optimization of crushing circuits.
Funder
National Council for Scientific and Technological Development
Coordenação de Aperfeicoamento de Pessoal de Nível Superior
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献