The Diagenetic Alteration of the Carbonate Rocks from the Permian Qixia Formation as Response to Two Periods of Hydrothermal Fluids Charging in the Central Uplift of Sichuan Basin, SW China

Author:

Chen Pei,Fu Meiyan,Deng Hucheng,Xu Wang,Wu Dong,He Puwei,Guo Hengwei

Abstract

The hydrothermal fluid–carbonate rock reaction is frequently regarded to occur in deep-burial diagenesis, and the hydrothermal dissolution is usually distributed and takes place along the faults. Previous studies have suggested that there was hydrothermal fluid activity locally in the Permian Qixia Formation in Sichuan Basin, likely related to the Emeishan basalt eruption. However, the effect of hydrothermal fluids on the carbonate rocks of the Qixia Formation in the central uplift of Sichuan Basin is still unclear. Based on the characteristics and geochemical parameters of the diagenetic minerals, this study aims to reveal the diagenetic alteration related to the hydrothermal fluid–rock reaction in the Qixia Formation and reestablish the diagenetic evolution by using the timing of diagenetic mineral precipitation. The methods include petrographic observation; trace and rare earth element (REE) analysis; C, O and Sr isotope measurement; fluid inclusion temperature measurement and cathodoluminescence analysis. According to the petrographic characteristics, the dolostones are mainly of crystalline structure, namely fine-medium crystalline dolostone, meso-coarse crystalline dolostone, and coarse crystalline dolostone, with the cathodoluminescence color becoming brighter in that order. The limestones from the Qixia Formation are of the bioclastic limestone type, with no cathodoluminescence color. Compared with dolostones, limestones have higher Sr content, lower Mn content, and heavier oxygen isotopes. With the crystalline size of dolostone becoming coarser, the oxygen isotopes of dolostones tend to become lighter. The meso-coarse crystalline dolostone has the highest Mn content and negative carbon isotope. Both limestones and dolostones have an obvious positive Eu anomaly in the Qixia Formation. However, the REE patterns of fine-medium crystalline dolostones are very different from those of meso-coarse crystalline dolostones. It is credible that there were two periods of hydrothermal fluid charging, with different chemical compositions. The first period of hydrothermal fluids could laterally migrate along the sequence boundary. Fine-medium crystalline dolostones were almost completely distributed below the sequence boundary and were dolomitized during the shallow burial period. As products of the hydrothermal fluid–dolostone reaction, the saddle-shaped dolomites in the meso-coarse crystalline dolostones were the evidence of the second period of hydrothermal fluids. As a result, the dolomitization model was established according to the timing of diagenetic mineral precipitation, which can improve that the geological understanding of the effect of hydrothermal fluid activities on the carbonate rocks in the Qixia Formation.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference71 articles.

1. Characteristics and main development controlling factors for lower Permian dolomite reservoirs in Chuanzhong region;Li;Pet. Geol. Oilfield Dev. Daqing,2017

2. Characteristics and genetic mechanism of the dolomite in the Middle Permian Maokou Formation, central Sichuan area;Liu;Acta Pet. Sin.,2017

3. The model of dolomitization jointly controlled by two-episode fluids in Maokou Formation in central Sichuan Basin;Wang;Acta Sedimentol. Sin.,2016

4. CA-TIMS zircon U–Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province

5. Geological significance of oil and gas in the Permian basalt eruption event in Sichuan Basin, China;Tian;J. Chengdu Univ. Technol.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3