Evolution of the Late Mesozoic Magmatism of the Omulevka Terrane of the North Part of the Verkhoyansk–Kolyma Orogenic Region

Author:

Trunilina Vera A.

Abstract

This article presents the results of a study of Late Mesozoic intrusive formations of the Omulevka terrane of the Verkhoyansk–Kolyma orogenic region. The research area covers the Selennyakh block of the Omulevka terrane and the territory adjacent to the south. The compositions of rock-forming, accessory and restitic minerals and geochemical features of intrusive rocks are considered. The methods of optical microscopy, microprobe, silicate and spectral analyses were used. There are the following several stages in the evolution of magmatism: (1) the Late Jurassic supra-subduction (gabbro, dolerites), (2) the beginning of the Early Cretaceous-transitional from supra-subduction to marginal-continental (gabbro-diorites, diorites, granodiorites), (3) the Early Cretaceous of active continental margin (granodiorites, granites), (4) the Late Cretaceous postorogenic or continental-riftogenic (alkali-feldspar granites of A-type), (5) the Late Cretaceous continental riftogenic (subalkaline gabbroids and basaltoids). In the process of evolution from stage one to stage four, there was an increase in the silicic acid content, total alkalinity and ferruginousity of rocks with the movement of magmogeneration levels to higher and higher horizons of the lithosphere (calculated pressure from 1.6–1.4 GPa to 0.6–0.9 GPa). At the same time, the preservation of high temperatures of magmogeneration (1000–1150 °C) and crystallization implies the supply of additional heat from an external (deep) source during the formation of granitoid melts. The magmatic activity is completed by the intrusion of subalkaline derivatives of a deep hearth, formed by metasomatized lherzolites. All the studied igneous rocks are either direct mantle fusions, or bear signs of the participation of mantle matter in the generation of parent melts in crustal substrates: the presence of tschermakite in gabbroids, nonequilibrium structures, the composition of early generations of biotites corresponding to biotites of mantle and crust-mantle derivatives, the presence of pyroxenes and accessory minerals characteristic of mantle magmas in granitoids. In the diagram Al-Na-K-2Ca–Fe + Ti + Mg, the composition points of the studied intrusive rocks tend to the mixing trend. In general, the research results suggest that the evolution of the Late Mesozoic intrusive magmatism of the studied territory and the specific matter of rock compositions were caused by the crust-mantle interaction as a result of the rise of mantle diapirs in the crust from a long-existing deep hearth of the main melt.

Funder

DPMGI SB RAS

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference63 articles.

1. Tectonics, Geodynamics and Metallogeny of the Territory of the Republic of Sakha (Yakutia),2001

2. Magmatism and Ore Deposits of the Northwestern Verkhoyansk-Chukotka Fold. Area;Nekrasov,1962

3. Structure, Formation History, Magmatism, and Metallogeny of the Northern Verkhoyansk Folded Zone;Ivensen,1975

4. Granitoids of the South. Verkhoyansk Region;Grinberg,1970

5. Petrology of Late Mesozoic Magmatic Rocks of Eastern Yakutia;Shkodzinskiy,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3