The LIM Domain Protein BmFHL2 Inhibits Egg Production in Female Silkworm, Bombyx mori

Author:

Yuan Qian1,Sun Xiaoning1,Lu Riming1,Qu Zhigang1,Ding Xueyan1,Dai Taiming1,Qiu Jianfeng1ORCID,Tan Yumei1,Zhu Ruihong1,Pan Zhonghua12,Xu Shiqing12,Sima Yanghu12

Affiliation:

1. School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China

2. Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China

Abstract

The female Bombyx mori accumulates a large amount of egg proteins, mainly Vg and 30K, during egg formation to provide nutrition for embryo development. The synthesis and transport of Vg have been extensively studied, particularly the regulation of Vg transcription induced by 20E; however, the mechanism of 30K protein synthesis is poorly studied. As a model organism of the order Lepidoptera, B. mori has high reproduction potential. In the present study, we found that the FHL2 homologous gene (BmFhl2) in B. mori is involved in inhibiting female egg formation by influencing the synthesis of 30K protein. Interference of BmFhl2 expression in silkworm females increased 30K protein synthesis, accelerated ovarian development, and significantly increased the number of eggs produced and laid; however, the 20E pathway was inhibited. The transcription levels of Vg and 30Kc19 were significantly downregulated following BmFhl2 overexpression in the silkworm ovarian cell line BmN. The Co-IP assay showed that the potential binding protein of BmFHL2 included three types of 30K proteins (30Kc12, 30Kc19, and 30Kc21). These results indicate that BmFHL2 participates in egg formation by affecting 30K protein in female B. mori.

Funder

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3