Metabolic Hijacking of Hexose Metabolism to Ascorbate Synthesis Is the Unifying Biochemical Basis of Murine Liver Fibrosis

Author:

Beyoğlu Diren12,Huang Pinzhu3,Skelton-Badlani Disha3,Zong Christine3,Popov Yury V.3ORCID,Idle Jeffrey R.124ORCID

Affiliation:

1. Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA

2. Arthur G. Zupko Institute for Systems Pharmacology and Pharmacogenomics, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA

3. Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA

4. Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland

Abstract

We wished to understand the metabolic reprogramming underlying liver fibrosis progression in mice. Administration to male C57BL/6J mice of the hepatotoxins carbon tetrachloride (CCl4), thioacetamide (TAA), or a 60% high-fat diet, choline-deficient, amino-acid-defined diet (HF-CDAA) was conducted using standard protocols. Livers collected at different times were analyzed by gas chromatography–mass spectrometry-based metabolomics. RNA was extracted from liver and assayed by qRT-PCR for mRNA expression of 11 genes potentially involved in the synthesis of ascorbic acid from hexoses, Gck, Adpgk, Hk1, Hk2, Ugp2, Ugdh, Ugt1a1, Akr1a4, Akr1b3, Rgn and Gulo. All hepatotoxins resulted in similar metabolic changes during active fibrogenesis, despite different etiology and resultant scarring pattern. Diminished hepatic glucose, galactose, fructose, pentose phosphate pathway intermediates, glucuronic acid and long-chain fatty acids were compensated by elevated ascorbate and the product of collagen prolyl 4-hydroxylase, succinate and its downstream metabolites fumarate and malate. Recovery from the HF-CDAA diet challenge (F2 stage fibrosis) after switching to normal chow was accompanied by increased glucose, galactose, fructose, ribulose 5-phosphate, glucuronic acid, the ascorbate metabolite threonate and diminished ascorbate. During the administration of CCl4, TAA and HF-CDAA, aldose reductase Akr1b3 transcription was induced six- to eightfold, indicating increased conversion of glucuronic acid to gulonic acid, a precursor of ascorbate synthesis. Triggering hepatic fibrosis by three independent mechanisms led to the hijacking of glucose and galactose metabolism towards ascorbate synthesis, to satisfy the increased demand for ascorbate as a cofactor for prolyl 4-hydroxylase for mature collagen production. This metabolic reprogramming and causal gene expression changes were reversible. The increased flux in this pathway was mediated predominantly by increased transcription of aldose reductase Akr1b3.

Publisher

MDPI AG

Subject

General Medicine

Reference78 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3