Sclerotinia sclerotiorum (Lib.) de Bary: Insights into the Pathogenomic Features of a Global Pathogen

Author:

Hossain Md. Motaher1ORCID,Sultana Farjana2ORCID,Li Weiqiang3ORCID,Tran Lam-Son Phan4ORCID,Mostofa Mohammad Golam5

Affiliation:

1. Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh

2. College of Agricultural Sciences, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh

3. Jilin Da’an Agro-Ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China

4. Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA

5. MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA

Abstract

Sclerotinia sclerotiorum (Lib.) de Bary is a broad host-range fungus that infects an inclusive array of plant species and afflicts significant yield losses globally. Despite being a notorious pathogen, it has an uncomplicated life cycle consisting of either basal infection from myceliogenically germinated sclerotia or aerial infection from ascospores of carpogenically germinated sclerotia. This fungus is unique among necrotrophic pathogens in that it inevitably colonizes aging tissues to initiate an infection, where a saprophytic stage follows the pathogenic phase. The release of cell wall-degrading enzymes, oxalic acid, and effector proteins are considered critical virulence factors necessary for the effective pathogenesis of S. sclerotiorum. Nevertheless, the molecular basis of S. sclerotiorum pathogenesis is still imprecise and remains a topic of continuing research. Previous comprehensive sequencing of the S. sclerotiorum genome has revealed new insights into its genome organization and provided a deeper comprehension of the sophisticated processes involved in its growth, development, and virulence. This review focuses on the genetic and genomic aspects of fungal biology and molecular pathogenicity to summarize current knowledge of the processes utilized by S. sclerotiorum to parasitize its hosts. Understanding the molecular mechanisms regulating the infection process of S. sclerotiorum will contribute to devising strategies for preventing infections caused by this destructive pathogen.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3