Role of Mitochondrial Iron Overload in Mediating Cell Death in H9c2 Cells

Author:

Tam Eddie,Sung Hye Kyoung,Lam Nhat Hung,You Sally,Cho Sungji,Ahmed Saher M.,Abdul-Sater Ali A.,Sweeney Gary

Abstract

Iron overload (IO) is associated with cardiovascular diseases, including heart failure. Our study’s aim was to examine the mechanism by which IO triggers cell death in H9c2 cells. IO caused accumulation of intracellular and mitochondrial iron as shown by the use of iron-binding fluorescent reporters, FerroOrange and MitoFerroFluor. Expression of cytosolic and mitochondrial isoforms of Ferritin was also induced by IO. IO-induced iron accumulation and cellular ROS was rapid and temporally linked. ROS accumulation was detected in the cytosol and mitochondrial compartments with CellROX, DCF-DA and MitoSOX fluorescent dyes and partly reversed by the general antioxidant N-acetyl cysteine or the mitochondrial antioxidant SkQ1. Antioxidants also reduced the downstream activation of apoptosis and lytic cell death quantified by Caspase 3 cleavage/activation, mitochondrial Cytochrome c release, Annexin V/Propidium iodide staining and LDH release of IO-treated cells. Finally, overexpression of MitoNEET, an outer mitochondrial membrane protein involved in the transfer of Fe-S clusters between mitochondrial and cytosol, was observed to lower iron and ROS accumulation in the mitochondria. These alterations were correlated with reduced IO-induced cell death by apoptosis in MitoNEET-overexpressing cells. In conclusion, IO mediates H9c2 cell death by causing mitochondrial iron accumulation and subsequent general and mitochondrial ROS upregulation.

Funder

NSERC Discovery

International Development research Council

CIHR

Publisher

MDPI AG

Subject

General Medicine

Reference34 articles.

1. Review on Iron and Its Importance for Human Health;Abbaspour;J. Res. Med. Sci.,2014

2. Current Understanding of Iron Homeostasis;Anderson;Am. J. Clin. Nutr.,2017

3. The Role of Hepcidin, Ferroportin, HCP1, and DMT1 Protein in Iron Absorption in the Human Digestive Tract;Przybyszewska;Prz. Gastroenterol.,2014

4. Role of Iron Deficiency and Overload in the Pathogenesis of Diabetes and Diabetic Complications;Liu;Curr. Med. Chem.,2009

5. Iron Metabolism in the CNS: Implications for Neurodegenerative Diseases;Rouault;Nat. Rev. Neurosci.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3