Genome-Wide Analysis on Transcriptome and Methylome in Prevention of Mammary Tumor Induced by Early Life Combined Botanicals

Author:

Arora Itika,Li Shizhao,Crowley Michael R.,Li YuanyuanORCID,Tollefsbol Trygve O.ORCID

Abstract

Breast cancer (BC) is the most common malignancy and the second leading cause of cancer death among women in the United States. The consumption of natural dietary components such as broccoli sprouts (BSp) and green tea polyphenols (GTPs) has demonstrated exciting potential in reducing the risk of BC through the regulation of epigenetic mechanisms. However, little is known about their impacts on reversing epigenomic aberrations that are centrally involved in the initiation and progression of BC. Previously, we have determined the efficacy of combined BSp and GTPs treatment on the inhibition of the growth of a mammary tumor in a transgenic Her2/neu mouse model. We sought to extend our previous study to identify universal biomarkers that represent common mechanistic changes among different mouse models in response to this dietary regime by including a new transgenic mouse model, C3(1)-SV40 TAg (SV40). As a result, we identified novel target genes that were differentially expressed and methylated in response to dietary botanicals when administered singly (BSp and GTPs) and in combination (BSp + GTPs) in both mouse models. We discovered more differentially expressed and methylated genes in the combination treatment group compared to the singly administered groups. Subsequently, several biological pathways related to epigenetic regulations were identified in response to the combination treatment. Furthermore, when compared to the BSp and GTPs treatment alone, the combinatorial treatment showed a more significant impact on the regulation of the epigenetic modifier activities involved in DNA methylation and histone modifications. Our study provides key insights about the impact of the combined administration of BSp and GTPs on BC using a multi-omics analysis, suggesting a combinatorial approach is more efficacious in preventing and inhibiting BC by impacting key tumor-related genes at transcriptomic and methylomic levels. Our findings could be further extrapolated as a comprehensive source for understanding the epigenetic modifications that are associated with the effects of these dietary botanicals on BC prevention.

Funder

National Cancer Institute

National Center for Complementary and Integrative Health

United States Department of Agriculture

Publisher

MDPI AG

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3