Affiliation:
1. Laser Research Centre, University of Johannesburg, Johannesburg 2006, South Africa
Abstract
Diabetic foot ulcers (DFUs) are open chronic wounds that affect diabetic patients due to hyperglycaemia. DFUs are known for their poor response to treatment and frequently require amputation, which may result in premature death. The present study evaluated the effect of photobiomodulation (PBM) at 660 nm on wound healing via activation of Ras/MAPK signalling in diabetic wounded cells in vitro. This study used four human skin fibroblast cell (WS1) models, namely normal (N), wounded (W), diabetic (D), and diabetic wounded (DW). Cells were irradiated at 660 nm with 5 J/cm2. Non-irradiated cells (0 J/cm2) served as controls. Cells were incubated for 24 and 48 h post-irradiation, and the effect of PBM on cellular morphology and migration rate, viability, and proliferation was assessed. Basic fibroblast growth factor (bFGF), its phosphorylated (activated) receptor FGFR, and phosphorylated target proteins (Ras, MEK1/2 and MAPK) were determined by enzyme-linked immunosorbent assay (ELISA) and Western blotting; nuclear translocation of p-MAPK was determined by immunofluorescence. PBM resulted in an increase in bFGF and a subsequent increase in FGFR activation. There was also an increase in downstream proteins, p-Ras, p-MEK1/2 and p-MAPK. PBM at 660 nm led to increased viability, proliferation, and migration as a result of increased bFGF and subsequent activation of the Ras/MAPK signalling pathway. Therefore, this study can conclude that PBM at 660 nm stimulates in vitro diabetic wound healing via the bFGF-activated Ras/MAPK pathway.
Funder
South African Research Chairs Initiative of the Department of Science and Technology (DST) and National Research Foundation (NRF) of South Africa
University of Johannesburg (URC), the African Laser Centre (ALC)
NRF Competitive Programme for Rated Researchers
Council for Scientific and Industrial Research (CSIR)—National Laser Centre (NLC), Laser Rental Pool Programme
Reference40 articles.
1. International Diabetes Federation (2021, March 20). IDF Diabetes Atlas. Nineth Edition. Available online: https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/159-idf-diabetes-atlas-ninth-edition-2019.html.
2. The humanistic and economic burden of chronic wounds. A protocol for a systematic review;Ni;Syst. Rev.,2017
3. Challenges in the Treatment of Chronic Wounds;Frykberg;Adv. Wound Care,2015
4. Shedding light on a new treatment for diabetic wound healing. A review on phototherapy;Houreld;Sci. World J.,2014
5. The Fibroblast Growth Factor signaling pathway;Ornitz;WIREs Dev. Biol.,2015
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献