Astroglial Connexin 43 Regulates Synaptic Vesicle Release at Hippocampal Synapses

Author:

Cheung Giselle1ORCID,Chever Oana1,Rollenhagen Astrid23,Quenech’du Nicole1,Ezan Pascal1,Lübke Joachim H. R.234ORCID,Rouach Nathalie1ORCID

Affiliation:

1. Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, 75231 Paris, France

2. Institute for Neuroscience and Medicine INM-10, Research Center Jülich, 52428 Jülich, Germany

3. Jülich-Aachen Research Alliance Translational Brain Medicine, 52056 Aachen, Germany

4. Department of Psychiatry, Psychotherapy and Psychosomatics, Rheinisch-Westfaelische Technische Hochschule Aachen University, 52056 Aachen, Germany

Abstract

Connexin 43, an astroglial gap junction protein, is enriched in perisynaptic astroglial processes and plays major roles in synaptic transmission. We have previously found that astroglial Cx43 controls synaptic glutamate levels and allows for activity-dependent glutamine release to sustain physiological synaptic transmissions and cognitiogns. However, whether Cx43 is important for the release of synaptic vesicles, which is a critical component of synaptic efficacy, remains unanswered. Here, using transgenic mice with a glial conditional knockout of Cx43 (Cx43−/−), we investigate whether and how astrocytes regulate the release of synaptic vesicles from hippocampal synapses. We report that CA1 pyramidal neurons and their synapses develop normally in the absence of astroglial Cx43. However, a significant impairment in synaptic vesicle distribution and release dynamics were observed. In particular, the FM1-43 assays performed using two-photon live imaging and combined with multi-electrode array stimulation in acute hippocampal slices, revealed a slower rate of synaptic vesicle release in Cx43−/− mice. Furthermore, paired-pulse recordings showed that synaptic vesicle release probability was also reduced and is dependent on glutamine supply via Cx43 hemichannel (HC). Taken together, we have uncovered a role for Cx43 in regulating presynaptic functions by controlling the rate and probability of synaptic vesicle release. Our findings further highlight the significance of astroglial Cx43 in synaptic transmission and efficacy.

Funder

European Research Council

European Union’s Horizon 2020 research and innovation program

FP7-PEOPLE Marie Curie Intra-European Fellowship for career development

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3