Role of C-Terminal Phosphorylation of Lamin A in DNA Damage and Cellular Senescence

Author:

Ao Ying12,Wu Zhuping1,Liao Zhiwei12,Lan Juncong12,Zhang Jie13ORCID,Sun Pengfei12,Liu Baohua12ORCID,Wang Zimei12

Affiliation:

1. Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China

2. Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University, Shenzhen 518055, China

3. Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program, Friedrich Schiller Universität, 07743 Jena, Germany

Abstract

The nuclear matrix protein lamin A is a multifunctional protein with roles in DNA replication and repair, gene activation, transcriptional regulation, and maintenance of higher-order chromatin structure. Phosphorylation is the main determinant of lamin A mobility in the nucleus and nuclear membrane dissolution during mitosis. However, little is known about the regulation of lamin A phosphorylation during interphase. Interestingly, C-terminal lamin A mutations trigger cellular senescence. Recently, we showed that the C-terminal region of lamin A interacts with casein kinase II (CK2). In the present study, we have expanded on our previous research to further investigate lamin A phosphorylation and elucidate the mechanisms underlying the effect of C-terminal mutations on cellular senescence. Our results indicate that glycogen synthase kinase 3β (GSK3β) and CK2 jointly mediate the phosphorylation of lamin A at C-terminal Ser628 and Ser636 residues. Furthermore, a loss of phosphorylation at either of these two sites affects the nuclear distribution of lamin A, leading to an impaired DNA damage response as well as cellular senescence. Thus, phosphorylation at C-terminal sites in lamin A appears to be important for maintaining genomic stability and preventing cellular senescence. These findings provide insight into how loss of the C-terminal region of lamin A may induce premature aging. Furthermore, enhancement of GSK3β and CK2 activity may represent a possible therapeutic approach for the treatment of aging-related diseases.

Funder

Shenzhen Municipal Commission of Science and Technology Innovation

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3