Myo-Inositol Supplementation Alleviates Cisplatin-Induced Acute Kidney Injury via Inhibition of Ferroptosis

Author:

Qi HuiyueORCID,Deng FeiORCID,Wang YinghuaiORCID,Zhang HaoORCID,Kanwar Yashpal S.,Dai Yingbo

Abstract

Myo-inositol, a carbocyclic sugar, is believed to be relevant to renal pathobiology since the kidney is the major site for its catabolism. Its role in acute kidney injury (AKI) has not been fully investigated. Ferroptosis, a unique form of regulated cell death, is involved in various types of renal injuries. The relevance of myo-inositol with respect to the process of ferroptosis has not been explored either. Herein, our current exploratory studies revealed that supplementation of myo-inositol attenuates cisplatin-induced injury in cultured Boston University mouse proximal tubular (BUMPT) cells and renal tubules in vivo. Moreover, our studies unraveled that metabolic parameters pertaining to ferroptosis were disrupted in cisplatin-treated proximal tubular cells, which were seemingly remedied by the administration of myo-inositol. Mechanistically, we noted that cisplatin treatment led to the up-regulation of NOX4, a key enzyme relevant to ferroptosis, which was normalized by the administration of myo-inositol. Furthermore, we observed that changes in the NOX4 expression induced by cisplatin or myo-inositol were modulated by carboxy-terminus of Hsc70-interacting protein (CHIP), an E3 ubiquitin ligase. Taken together, our investigation suggests that myo-inositol promotes CHIP-mediated ubiquitination of NOX4 to decelerate the process of ferroptosis, leading to the amelioration of cisplatin-induced AKI.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Guangdong Province Natural Science Foundation

Department of Science and Technology of Guangdong Province

Innovative Platform and Talents Project of Hunan Province

Hunan Province Natural Science Foundation

Scientific Research Launch Project for new employees of the Second Xiangya Hospital of Central South University

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3