Highlighting In Vitro the Role of Brain-like Endothelial Cells on the Maturation and Metabolism of Brain Pericytes by SWATH Proteomics

Author:

Menaceur Camille1,Hachani Johan1,Dib Shiraz1,Duban-Deweer Sophie1,Karamanos Yannis1ORCID,Shimizu Fumitaka2ORCID,Kanda Takashi2,Gosselet Fabien1ORCID,Fenart Laurence1ORCID,Saint-Pol Julien1ORCID

Affiliation:

1. Univ. Artois, UR 2465, Blood-Brain Barrier Laboratory (LBHE), F-62300 Lens, France

2. Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan

Abstract

Within the neurovascular unit, brain pericytes (BPs) are of major importance for the induction and maintenance of the properties of the blood-brain barrier (BBB) carried by the brain microvessel endothelial cells (ECs). Throughout barriergenesis, ECs take advantage of soluble elements or contact with BPs to maintain BBB integrity and the regulation of their cellular homeostasis. However, very few studies have focused on the role of ECs in the maturation of BPs. The aim of this study is to shed light on the proteome of BPs solocultured (hBP-solo) or cocultured with ECs (hBP-coc) to model the human BBB in a non-contact manner. We first generated protein libraries for each condition and identified 2233 proteins in hBP-solo versus 2492 in hBP-coc and 2035 common proteins. We performed a quantification of the enriched proteins in each condition by sequential window acquisition of all theoretical mass spectra (SWATH) analysis. We found 51 proteins enriched in hBP-solo related to cell proliferation, contractility, adhesion and extracellular matrix element production, a protein pattern related to an immature cell. In contrast, 90 proteins are enriched in hBP-coc associated with a reduction in contractile activities as observed in vivo in ‘mature’ BPs, and a significant gain in different metabolic functions, particularly related to mitochondrial activities and sterol metabolism. This study highlights that BPs take advantage of ECs during barriergenesis to make a metabolic switch in favor of BBB homeostasis in vitro.

Funder

French National Research Agency

French State and Region Hauts-de-France

European Regional Development Fund

Conseil Régional Hauts de France

University of Artois

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3