Unleashed Actin Assembly in Capping Protein-Deficient B16-F1 Cells Enables Identification of Multiple Factors Contributing to Filopodium Formation

Author:

Hein Jens Ingo1,Scholz Jonas1,Körber Sarah1ORCID,Kaufmann Thomas1,Faix Jan1ORCID

Affiliation:

1. Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany

Abstract

Background: Filopodia are dynamic, finger-like actin-filament bundles that overcome membrane tension by forces generated through actin polymerization at their tips to allow extension of these structures a few microns beyond the cell periphery. Actin assembly of these protrusions is regulated by accessory proteins including heterodimeric capping protein (CP) or Ena/VASP actin polymerases to either terminate or promote filament growth. Accordingly, the depletion of CP in B16-F1 melanoma cells was previously shown to cause an explosive formation of filopodia. In Ena/VASP-deficient cells, CP depletion appeared to result in ruffling instead of inducing filopodia, implying that Ena/VASP proteins are absolutely essential for filopodia formation. However, this hypothesis was not yet experimentally confirmed. Methods: Here, we used B16-F1 cells and CRISPR/Cas9 technology to eliminate CP either alone or in combination with Ena/VASP or other factors residing at filopodia tips, followed by quantifications of filopodia length and number. Results: Unexpectedly, we find massive formations of filopodia even in the absence of CP and Ena/VASP proteins. Notably, combined inactivation of Ena/VASP, unconventional myosin-X and the formin FMNL3 was required to markedly impair filopodia formation in CP-deficient cells. Conclusions: Taken together, our results reveal that, besides Ena/VASP proteins, numerous other factors contribute to filopodia formation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3