Deciphering Interactions between Phosphorus Status and Toxic Metal Exposure in Plants and Rhizospheres to Improve Crops Reared on Acid Soil

Author:

Wang Xiurong1,Ai Shaoying2,Liao Hong3ORCID

Affiliation:

1. Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China

2. Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

3. Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

Acid soils are characterized by deficiencies in essential nutrient elements, oftentimes phosphorus (P), along with toxicities of metal elements, such as aluminum (Al), manganese (Mn), and cadmium (Cd), each of which significantly limits crop production. In recent years, impressive progress has been made in revealing mechanisms underlying tolerance to high concentrations of Al, Mn, and Cd. Phosphorus is an essential nutrient element that can alleviate exposure to potentially toxic levels of Al, Mn, and Cd. In this review, recent advances in elucidating the genes responsible for the uptake, translocation, and redistribution of Al, Mn, and Cd in plants are first summarized, as are descriptions of the mechanisms conferring resistance to these toxicities. Then, literature highlights information on interactions of P nutrition with Al, Mn, and Cd toxicities, particularly possible mechanisms driving P alleviation of these toxicities, along with potential applications for crop improvement on acid soils. The roles of plant phosphate (Pi) signaling and associated gene regulatory networks relevant for coping with Al, Mn, and Cd toxicities, are also discussed. To develop varieties adapted to acid soils, future work needs to further decipher involved signaling pathways and key regulatory elements, including roles fulfilled by intracellular Pi signaling. The development of new strategies for remediation of acid soils should integrate the mechanisms of these interactions between limiting factors in acid soils.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3