NbMLP43 Ubiquitination and Proteasomal Degradation via the Light Responsive Factor NbBBX24 to Promote Viral Infection

Author:

Song Liyun1ORCID,Jiao Yubing1,Song Hongping2,Shao Yuzun1,Zhang Daoshun2,Ding Chengying1,An Dong1,Ge Ming1,Li Ying1,Shen Lili1,Wang Fenglong1,Yang Jinguang1

Affiliation:

1. Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China

2. Hubei Engineering Research Center for Pest Forewarning and Management, Agricultural College, Yangtze University, Jingzhou 434025, China

Abstract

The ubiquitin–proteasome system (UPS) plays an important role in virus–host interactions. However, the mechanism by which the UPS is involved in innate immunity remains unclear. In this study, we identified a novel major latex protein-like protein 43 (NbMLP43) that conferred resistance to Nicotiana benthamiana against potato virus Y (PVY) infection. PVY infection strongly induced NbMLP43 transcription but decreased NbMLP43 at the protein level. We verified that B-box zinc finger protein 24 (NbBBX24) interacted directly with NbMLP43 and that NbBBX24, a light responsive factor, acted as an essential intermediate component targeting NbMLP43 for its ubiquitination and degradation via the UPS. PVY, tobacco mosaic virus, (TMV) and cucumber mosaic virus (CMV) infections could promote NbMLP43 ubiquitination and proteasomal degradation to enhance viral infection. Ubiquitination occurred at lysine 38 (K38) within NbMLP43, and non-ubiquitinated NbMLP43(K38R) conferred stronger resistance to RNA viruses. Overall, our results indicate that the novel NbMLP43 protein is a target of the UPS in the competition between defense and viral anti-defense and enriches existing theoretical studies on the use of UPS by viruses to promote infection.

Funder

Shandong Provincial Natural Science Foundation Project

Major Green Prevention and Control projects

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3