Notch1 Protects against Ischemic-Reperfusion Injury by Suppressing PTEN-Pink1-Mediated Mitochondrial Dysfunction and Mitophagy

Author:

Xu Qirong,Liu Sheng,Gong Qiang,Zhu Rongrong,Liu Jichun,Wu Qicai,Zhou XueliangORCID

Abstract

Background: Myocardial ischemia/reperfusion injury is associated with adverse cardiovascular outcomes after acute myocardial infarction. However, the molecular mechanism of ischemia/reperfusion injury remains unclear. Mitochondria dysfunction is a participant in and regulator of myocardial ischemia-reperfusion injury. However, the molecular mechanisms involved in this process are not yet fully understood. We previously reported that Notch1 can reduce mitochondrial lysis, reduce myocardial infarct size, and inhibit ventricular remodeling. Herein, we explore the role of the downstream target Notch1 in mitochondrial regulation. Methods: This study constructs an ischemic/reperfusion injury rat model and a hypoxia/reoxygenation cell model. The expression of PTEN is detected by real-time PCR, Western blot, and immunofluorescence staining. Cell viability is analyzed with CCK-8. Apoptosis level is detected via the TUNEL assay, and mitochondrial fission/fusion is analyzed with MitoTracker Green staining. Cardiac troponin I (cTnI), lactate dehydrogenase (LDH), superoxide dismutase (SOD), and CK levels of creatine kinase-MB (CK) are measured with ELISA kits. Results: We found that PETN-Pink1-Parkin signaling is inhibited by Notch1 I/R in injured neonatal cardiomyocytes and hearts, i.e., via the inhibition of mitochondrial dysfunction and fragmentation. With the recure of PTEN or Pink1, the protective effect of Notch1 was largely diminished. Conclusion: These results suggest that N1ICD acts protectively against ischemic reperfusion injury by suppressing PTEN-Pink1-mediated mitochondrial dysfunction and fragmentation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Innovation of Science and Technology in Jiangxi Province Outstanding Young Talent Training Plan

Publisher

MDPI AG

Subject

General Medicine

Reference40 articles.

1. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective;Heusch;Nat. Rev. Cardiol.,2020

2. Myocardial ischemia and reperfusion;Jennings;Monogr. Pathol.,1995

3. Myocardial ischemia and reperfusion: A murine model;Michael;Am. J. Physiol.,1995

4. A novel cardioprotective function for DRP1 inhibition;Robson;Nat. Rev. Cardiol.,2021

5. Left Ventricular Unloading in Myocardial Infarction: Gentle Reperfusion Through the Backdoor?;Heusch;J. Am. Coll. Cardiol.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3