The Pursuit of the “Inside” of the Amyloid Hypothesis—Is C99 a Promising Therapeutic Target for Alzheimer’s Disease?

Author:

Takasugi Nobumasa12ORCID,Komai Masato1,Kaneshiro Nanaka34ORCID,Ikeda Atsuya1,Kamikubo Yuji2,Uehara Takashi1

Affiliation:

1. Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan

2. Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan

3. Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA

4. Center for RNA Biology and Medicine, University of California, Riverside, CA 92521, USA

Abstract

Aducanumab, co-developed by Eisai (Japan) and Biogen (U.S.), has received Food and Drug Administration approval for treating Alzheimer’s disease (AD). In addition, its successor antibody, lecanemab, has been approved. These antibodies target the aggregated form of the small peptide, amyloid-β (Aβ), which accumulates in the patient brain. The “amyloid hypothesis” based therapy that places the aggregation and toxicity of Aβ at the center of the etiology is about to be realized. However, the effects of immunotherapy are still limited, suggesting the need to reconsider this hypothesis. Aβ is produced from a type-I transmembrane protein, Aβ precursor protein (APP). One of the APP metabolites, the 99-amino acids C-terminal fragment (C99, also called βCTF), is a direct precursor of Aβ and accumulates in the AD patient’s brain to demonstrate toxicity independent of Aβ. Conventional drug discovery strategies have focused on Aβ toxicity on the “outside” of the neuron, but C99 accumulation might explain the toxicity on the “inside” of the neuron, which was overlooked in the hypothesis. Furthermore, the common region of C99 and Aβ is a promising target for multifunctional AD drugs. This review aimed to outline the nature, metabolism, and impact of C99 on AD pathogenesis and discuss whether it could be a therapeutic target complementing the amyloid hypothesis.

Funder

Japan Society for the Promotion of Science

MDPI

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3