Affiliation:
1. Institute of Hygiene, University Hospital Münster, 48149 Münster, Germany
2. Biomedical Technology Center of the Medical Faculty, University of Münster, 48149 Münster, Germany
Abstract
Quantitative phase imaging (QPI) is a non-invasive, label-free technique used to detect aberrant cell morphologies caused by disease, thus providing a useful diagnostic approach. Here, we evaluated the potential of QPI to differentiate specific morphological changes in human primary T-cells exposed to various bacterial species and strains. Cells were challenged with sterile bacterial determinants, i.e., membrane vesicles or culture supernatants, derived from different Gram-positive and Gram-negative bacteria. Timelapse QPI by digital holographic microscopy (DHM) was applied to capture changes in T-cell morphology over time. After numerical reconstruction and image segmentation, we calculated single cell area, circularity and mean phase contrast. Upon bacterial challenge, T-cells underwent rapid morphological changes such as cell shrinkage, alterations of mean phase contrast and loss of cell integrity. Time course and intensity of this response varied between both different species and strains. The strongest effect was observed for treatment with S. aureus-derived culture supernatants that led to complete lysis of the cells. Furthermore, cell shrinkage and loss of circular shape was stronger in Gram-negative than in Gram-positive bacteria. Additionally, T-cell response to bacterial virulence factors was concentration-dependent, as decreases in cellular area and circularity were enhanced with increasing concentrations of bacterial determinants. Our findings clearly indicate that T-cell response to bacterial stress depends on the causative pathogen, and specific morphological alterations can be detected using DHM.
Funder
Deutsche Forschungsgemeinschaft
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献