Affiliation:
1. Laboratoire Hubert Curien, UMR-CNRS 5516, Université Jean Monnet, 42000 Saint-Etienne, France
2. Institut Universitaire de France (IUF), Ministère de l’Enseignement Supérieur et de la Recherche, 75005 Paris, France
Abstract
The combination of an ultra-low-loss optical fiber sensitive to ionizing radiation and an optical time domain reflectometer (OTDR) is investigated to explore the feasibility of a single-ended distributed radiation detector. The peculiarity of the tested fiber resides in its regenerative high radiation-induced attenuation (RIA) response in the infrared spectrum (1310 nm), which returns to a low value once the irradiation has ended, combined to its sensitivity, highly increasing with the dose rate. In this work, only some sections of the fiber line were irradiated with 100 kV X-rays at room temperature, to prove the spatially resolved radiation detection capabilities of the system. The transient RIA response of the fiber was characterized at different pre-irradiation doses. A pre-irradiation treatment was shown to stabilize the optical fiber response, improving its RIA vs. dose rate linearity and repeatability. This improved response, in terms of radiation quantification, comes at the cost of a lower detection threshold. This work lays the bases for a distributed radiation detector, with some capabilities in dose rate evaluation.
Funder
European Union’s Horizon 2020 research and innovation program