In Vitro Radioenhancement Using Ultrasound-Stimulated Microbubbles: A Comparison of Suspension and Adherent Cell States

Author:

McCorkell Giulia1ORCID,Nakayama Masao12ORCID,Feltis Bryce3,Piva Terrence J.3ORCID,Geso Moshi1

Affiliation:

1. Discipline of Medical Radiations, School Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia

2. Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Kobe 650-0017, Japan

3. Discipline of Human Bioscience, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia

Abstract

Background: Ultrasound-stimulated microbubbles (USMB) have shown potential for enhancing radiation treatment via cavitation and sonoporation mechanisms. However, in vitro studies have produced inconsistent results, with adherent cells demonstrating no radioenhancement. This study aims to investigate the effect of cell adherence on in vitro radioenhancement using USMB and radiation. Method: Lung metastases of follicular thyroid carcinoma cells (FTC-238) and non-small cell lung carcinoma cells (NCI-H727) were treated, both when adhered and in suspension, using 1.6% (v/v) Definity™ microbubbles, ~90 s of 2 MHz ultrasound with mechanical index 0.9, and either 3 Gy or 6 Gy of megavoltage (MV) X-rays. The cell viability was measured using an MTS assay 72 h post-treatment, and statistical analysis was conducted using a three-way analysis of variance. Results: Statistically significant differences were observed for cells treated when adherent compared to suspended. An additive effect was detected in NCI-H727 cells treated in suspension, but not while adherent, while no enhancement was observed for FTC-238 cells in either culture state. Conclusions: To the best of our knowledge, this is the first study to directly compare the effect of cell adherence on the radioenhancement potential of USMB in vitro, and the first to do so using a metastatic cell line.

Funder

Australian Government’s Department of Education and Training

Publisher

MDPI AG

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3