Study on the Influence of Image Noise on Monocular Feature-Based Visual SLAM Based on FFDNet

Author:

Cao LikeORCID,Ling JieORCID,Xiao XiaohuiORCID

Abstract

Noise appears in images captured by real cameras. This paper studies the influence of noise on monocular feature-based visual Simultaneous Localization and Mapping (SLAM). First, an open-source synthetic dataset with different noise levels is introduced in this paper. Then the images in the dataset are denoised using the Fast and Flexible Denoising convolutional neural Network (FFDNet); the matching performances of Scale Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF) and Oriented FAST and Rotated BRIEF (ORB) which are commonly used in feature-based SLAM are analyzed in comparison and the results show that ORB has a higher correct matching rate than that of SIFT and SURF, the denoised images have a higher correct matching rate than noisy images. Next, the Absolute Trajectory Error (ATE) of noisy and denoised sequences are evaluated on ORB-SLAM2 and the results show that the denoised sequences perform better than the noisy sequences at any noise level. Finally, the completely clean sequence in the dataset and the sequences in the KITTI dataset are denoised and compared with the original sequence through comprehensive experiments. For the clean sequence, the Root-Mean-Square Error (RMSE) of ATE after denoising has decreased by 16.75%; for KITTI sequences, 7 out of 10 sequences have lower RMSE than the original sequences. The results show that the denoised image can achieve higher accuracy in the monocular feature-based visual SLAM under certain conditions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving autonomous detection in dynamic environments with robust monocular thermal SLAM system;ISPRS Journal of Photogrammetry and Remote Sensing;2023-09

2. Robust monocular visual inertial odometry in γ radioactive environments using edge-based point features;Physica Scripta;2023-08-18

3. Image Preprocessing Method for Visual Localization in γ Radioactive Environments;2023 2nd International Conference on Robotics, Artificial Intelligence and Intelligent Control (RAIIC);2023-08-11

4. Correlation Filtering Algorithm of Infrared Spectral Data for Dim Target Tracking;Advances in Mathematical Physics;2023-04-24

5. Comparative Analysis of CNN Models and Bayesian Optimization-Based Machine Learning Algorithms in Leaf Type Classification;Balkan Journal of Electrical and Computer Engineering;2023-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3