How to Minimize the Nitrogen Pollution Risk of Applying Reclaimed Sewage for Urban Turfgrass Irrigation

Author:

Li Yali12,Zhang Hongjuan3,Liu Mengzhu4,Pei Hongwei125ORCID

Affiliation:

1. Department of Municipal and Environmental Engineering, Hebei University of Architecture, Zhangjiakou 075000, China

2. Key Laboratory of Water Quality Engineering and Comprehensive Utilization of Water Resources, Zhangjiakou 075000, China

3. College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou 730070, China

4. Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China

5. College of Urban and Environmental Sciences, Peking University, Beijing 100871, China

Abstract

Reclamation of treated sewage is an important way to alleviate urban water scarcity and optimize ecological layout, especially in irrigating urban turfgrass. Nevertheless, the irrational use of reclaimed sewage could result in risk of excessive nitrogen (N) pollution, which requires a scientific understanding and assessment. This study examined the water-N transport process of the turfgrass system with a HYDRUS-2D model that was accurately calibrated and validated using a set of field experimental data in North China. By integrating 15 scenarios with different irrigation levels and N applications into the model, the turfgrass water flow and N fate characteristics were estimated. The results showed that the adjusted HYDRUS-2D model effectively simulated the volumetric soil water content, drainage water, N leaching, and soil N residual. The temporal variation in turfgrass water loss and N leaching consistently followed that of precipitation and irrigation, with more than 60% of the total drainage water occurring from June to August. The N leaching was at its peak during April and August, and total ammonium-N and nitrate-N leaching was 2.86 and 2.02 kg/hm2, respectively. In simulated scenarios, the turfgrass drainage water was significantly reduced by 26.82% under I60%S1/3-I60%S3 scenarios (I was 100%, 80%, or 60% of total irrigation and S was 1/3, 1/2, 1, 2, or 3 times the experimental sewage concentration), while root water uptake only decreased by 0.85%. Meanwhile, N leaching and soil N residual were significantly reduced by 3.94% and 26.56% under I60%S1/2, respectively. Furthermore, by the TOPSIS entropy weight method, I60%S1/2 was identified as an optimal turfgrass irrigation strategy for the semi-arid region of North China. These results provide a guiding basis for sewage green treatment and urban sustainable irrigation on turfgrass.

Funder

Hebei Provincial Key R&D Programme

Natural Science Foundation of China

Science Foundation of Hebei Education Department

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3