Impacts of Acetochlor on Nitrogen-Cycling-Related Microbial Communities in Riparian Zone Soils

Author:

Lyu Chunjian1,Cui Jianglong2,Jin Fangyuan2,Li Xiaojie1,Xu Yaning3

Affiliation:

1. Water Conservancy and Civil Engineering Collage, Inner Mongolia Agricultural University, Huhhot 010018, China

2. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

3. Tieling Ecological Environment Bureau Changtu County Branch, Tieling 112599, China

Abstract

The riparian zone has a proven ability to reduce agricultural nonpoint-source nitrogen pollution. However, prior studies have only assessed nitrification and denitrification and their influencing factors, such as hydrology, climate, vegetation, and soil physicochemical properties, and overlooked the role of pesticide accumulation, which is an important nonpoint-source anthropogenic pollutant. This study investigated the response of the soil microbial nitrogen cycle in riparian zones to 60 days of acetochlor (ACE) exposure at doses of 0.5, 2.5, and 5.0 mg/kg. The results showed that ACE inhibited the transformation of soil NH3-N, NO3−-N, and NO2−-N and also decreased potential nitrification and denitrification rates by affecting the respective enzyme activities and related microbial communities. Metagenomic sequencing revealed that the expression of functional genes associated with NO3−-N transformation processes, including denitrification, dissimilatory nitrate reduction to ammonium, and assimilatory nitrate reduction, declined the most. The recommended field dose (0.5 mg/kg) showed a slight effect on soil microbial nitrogen transformation and the related microbial communities, whereas doses 5 and 10 times the recommended dose were highly inhibitory. This is a novel study exploring the effects of ACE on the microbial nitrogen cycle in riparian soils, also suggesting that pesticide accumulation in riparian zones could affect the health of aquatic ecosystems.

Funder

Central Public-interest Scientific Institution Basal Research Fund

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3