Gold Nanoparticle-Based Enzyme-Assisted Cyclic Amplification for the Highly-Sensitive Detection of miRNA-21

Author:

Qing Yang,Yang Yuxing,Ouyang Ping,Fang Chenxin,Fang Haobin,Liao Yazhen,Li Haiyu,Wang Zhencui,Du JieORCID

Abstract

Because microRNAs (miRNAs) are biological indicators for the diagnosis, treatment, and monitoring of tumors, cancers, and other diseases, it is significant to develop a rapid, sensitive, and reliable miRNA detection platform. In this study, based on miRNA-21 detection, DNA-a with a 3′ end overhang and Texas Red fluorophore-labeled 5′ end was designed, which reacts with miRNA-21 and hybridizes with exonuclease III (Exo III), where the part connected to miRNA-21 is hydrolyzed, leaving a-DNA. At the same time, miRNA-21 is released to participate in the following reaction, to achieve cyclic amplification. a-DNA reacts with DNA-b conjugated to gold nanoparticles to achieve fluorescence quenching, with the quenching value denoted as F; additionally, after adding DNA-d and linked streptavidin immunomagnetic beads (SIBs), fluorescence recovery was achieved using DNA-c, with the recovered fluorescence recorded as F0. By comparing the difference in the fluorescence (F0 − F) between the two experiments, the amount of DNA-a hydrolyzed to produce a-DNA was established to determine the target miRNA-21 content. Under optimized conditions, by comparing the changes in the fluorescence signal, the developed strategy shows good sensitivity and repeatability, with a detection limit of 18 pM, good discriminative ability and selectivity, and promise for the early diagnosis of breast and intestinal cancers.

Funder

National Natural Science Foundation of China

Graduate Students Innovation Research Project of Hainan Province

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3