Determination of Interaction Parameters between Mn and Al and the Influence of Mn on Al2O3 Inclusions Formation in High Mn and Al Content Fe-Mn-Al-O Melts at 1873 K

Author:

Zhang Jie1,Luo Xinru1,Yan Baijun1ORCID,Wang Daya2,Liu Hongbo3

Affiliation:

1. Department of Physical Chemistry of Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Safety and Environmental Engineering Technology Institute, Sinosteel Group, Maanshan 243071, China

3. Materials Technology Research Institute, HBIS Group, Shijiazhuang 050023, China

Abstract

For the purpose of determining the interaction parameters between Mn and Al, and the influence of Mn on Al2O3 inclusions formation in the Fe-Mn-Al-O melts with high Mn and Al contents, three groups of Fe-Mn-Al-O melts with the initial Al content of 3, 5, and 7 mass% and different Mn contents were equilibrated with pure solid Al2O3 in an Al2O3 crucible at 1873 K and Ar-H2 atmosphere. Then, the interaction parameters between Mn and Al were deduced using the WIPF (Wagner’s Interaction Parameter Formalism) and the R-K polynomial (Redlich-Kister type polynomial), respectively. From the WIPF, the first- and second-order interaction parameters, eAlMn and rAlMn, were determined to be 0.0292 and −0.00016, respectively. From the R-K polynomial, the binary interaction parameters, ΩMn-Al0 and ΩMn-Al1, were determined to be 73,439 J/mol and −34,919 J/mol, respectively. The applicability of the WIPF to high Mn and Al content Fe-Mn-Al-O melts was investigated by comparing the Al activity calculated by the WIPF and the R-K polynomial using the obtained data. The results showed that WIPF can be used in high Mn and Al content melts in the current concentration range. Further from the iso-activity contours of Al, the activity of Al increases with increasing Al or Mn content. Finally, the thermodynamic calculations show that the addition of Mn decreases the equilibrium O content at the same Al content, making the formation of Al2O3 inclusions easier.

Funder

National Natural Science Foundation of China

National Key Research and Development Project

Major Special Science and Technology Project of Anhui Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3